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SUMMARY

The report summarizes the work of the last year under the general

Iheading "Effect of Local Material Imperfections on the Buckling Behavior o"

Composite Structural Elements". The report contains two parts. The first

part deals with delamination buckling of pressure-loaded long cylindrical

shells and panels, and the second with buckling of radially-loaded annular

plates of laminated construction with or without radial stiffeners.

In part A, the geometry I.s virtually I sotroplc and the emphasis is on

assessing the effect of delami.nation position and size on the critical

pressure. The boundary conditions on the panels are either simply

supported or clamped at circumferential positions. Note that the

cylindrical shells or panels are extremely long and the delamination

extends along the entire length.

In part B the circular annular plates are subjected to uniform radial

compression around the circumference. Laminated and Isotropic geometries

are used. For the isotropic geometries the effect of plate and stiffener

rJgfdities on the buckling load are fully assessed. Moreover, the effect

of boundary conditions i.s also studied. Finally, for the laminated

geometry, a solution procedure is presented, and demonstrated through a

laminated geometry that yields a primary state which has n uniform state of

stress (symmetric and quasl-isotroplc in extension).

AcQ:eOc o: Fc.r

NT)S CtR*i&j 4
DTiC -""[.

,.

T. ... ..... .. .......... .............
bi,t ibtio /

Av uil ::ty C, s

A "i1i .'.dj or
Dist SpUCII

LL4/-



CONTENTS

Page
SUMi-!ARY

PART A: BUCKLING OF DELAMINATED, LONG CYLINDRICAL
PANELS UNDER PRESSURE 1

1. Introduction 1

2. Mathematical Formulation 1

2.1 Description of the Delamination Problem 5

3. Solution Procedure 13

4. Numerical Results 23

5. References 27

6. Figures and Tables 30

PART B: BUCKLING AND ANNULAR PLATES 38

I. EFFECT OF BOUNDARY CONDITIONS AND RIGIDITIES ON THE
BUCKLING OF ANNULAR PLATES 39

1. Introduction 39)5

2. Mathematical Formulation 40

3. Numerical Examples 43

. 3.1 Primary State Distributicis 44

.5 3.2 Simply Supported Multi-Annular Plates 47

3.3 Clamped Multiannular Plates 57

3.4 Analysis of a Ring-Stiffened Plate Using Plate
Theory 61

4. Conclusions 64

5. References 65

II. BUCKLING OF LAMINATED CIRCULAR PLATES 67

1. IntroductJ on 67

2. Mathematical Formulation 67

3. Solution of Buckling Equations 69

4. Numerical Results 71

5. References 72

6. Appendices A and B 72

'5-



BUCKLING OF DELAMINATED, LONG,
CYLINDRICAL PANELS UNDER PRESSURE.

George J. Simitses4 and Ziqi. Chen"

School of Engineering Science and Mechanics
Georgia Institute of Technology, Atlanta, Georgia

JI Abstract

DelaminatJon I.s one of the basic defects inherent to laminar materials.

The investigation of the buckling characteristics of delaminated cylindri-

cal shells or panels, when subjected to external pressure, Is presented

herein. The geometry is such that it covers a wide range of length to

radius ratios as well as panels of different widths. Results are presented

only for very long cylinders and panels. The boundaries are either simply

supported or clamped. Furthermore, the material Is such that it leads to

(quasi) isotropic laminates for all sections involved; the overall as well

as the ones separated by the delamination. Finally, the geometry is free

of initial geometric imperfections. Because of the last two assumptions, a

primary membrane state exists and bifurcational buckling is possible.

Buckling load are calculated for a wide range of parameters. The width and

the through-the-thickriess position of delamination greatly affect the

bifurcation load. 1. Introduction

Cylindrical shells and panels are widely used as primary structures in

oeveral appli cations. These are often subjected to destabilizing loads.

Therefore, buckling Is an important failure mode and it forms a fundamental

so,3i.eratJon in the design of such systems.

The advent of fiber reinforced composite materials has resulted in a

signJlicant increase of their use as a construction material, because of

their many advantages, especially their high potential weight and overall
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costs savings. It was deemed necessary then to investigate the buckling

characteristics of laminated cylindrical shells. Initially, the studies

were confined to configurations, which are free of defects, such as

delami nations.

In 1975, Tennyson [I] presented a review of all previous studies on

the problem. Most of these studies employed the classical approach and

dealt with individual and combined application of uniform axial

compression, pressure and torsion. Hirano [2] investigated the buckling of

angle-ply laminated circular cylinders and obtained the best lamination

angles which give the highest buckling stress. There are also some papers

about the stability of triple-layered anisotropi~c cylindrical shells [3-5]

and sandwich panels [6].

The stability of geometrically imperfect, laminated cylindrical shells

were investigated by Simitses, Shaw and Sheinman [7-10]. The governing

equations for the nonlinear analysis of imperfect, stiffened, laminated,

circular, cylindrical thin shells, subjected to uniform axial compression

and torsion, and supported in various ways, were derived and presented.

* Two types of formulations were developed, one (W, F formulations) based on

Donnell-type nonlinear kinematic relations and the other (U, V, W

* ormulation) based on Sanders-type.

The b-ickling of laminated cylindrical panels was studied in recent

years also. Zhang and Matthews [11,12] considered panels under four kinds

of boundary conditions subjected to the combination of axial compression

-nd shear forces. Two coupled, fourth-order partial differential equations

were olved by the use of multiple Fourier series. Numerical computations

were performed for a number of panels with different lay-ups, different

c Jrvat;ires and different materials.
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Whitney [13] studied the buckling of anJsotropic cylindrical panels

under arbitrary combJnations of axial load, internal pressure and in-pla' .
-

ishear load. He used Donnell-type equations in conjunction with GalerkJn's

method to determine critical loads.

ucklJng and initial postbuckling behavior of symmetrically laminated,

Sthi n cross-ply cylindrical panels under axial compression was investigated

by 'Hui [1]. He obtained closed form solutions for the buckling loads.

The initial asymmetric postbucklJng behavior was demonstrated by computing

the postbuckli.ng coefficients.

Composite structures often contain delaminations. Causes of

delamination are many and include tool drops, bird strikes, runway debris

hits, and manufacturing defects. The presence of delamination in a
4-

co.oposite material may cause local buckling and therefore a reduction in

the overall load bearing capacity of the structure. The problem of

tela-rination buckling has received attention in recent years.

A finite element analysis was developed by Whitcomb [15] to analyze a

SlaJnated plate with a through-the-width delamination. The postbucklJn.

)er.avior was studied. In the parametric study, stress distributions and

strain-enery release rates were calculated for various delamination

. lengths, delamination depths, applied loads, and lateral deflections. Some

elamjnatjon growth data were obtained through fatigue tests. Another

paper in this subject was presented by the above author and Shivakumar

'2%], in 1985, in which the buckling of an elliptic delamination embedded

near the surface of a thick quasi-isotropic laminate was studied. Both the

Finite lement and the Rayleigh-Ritz methods were used for the analysis.

The Rvyleigh-RJtz method was found to be simple, inexpensive, and accurate,

?expept 'rot highly anJsotropic delaminated regions. In that paper, effects

. 'w3
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of delaminati.on shape and orJ.entation, material anisotropy, and layup on

buckling strains were examined.

Yin and Wang [17] derived a simple expression for the energy release

rate associated with the growth of a general one-dimensional delamination.

The energy release rate was evaluated by means of the path-independent

. J-i ntegral. Yin and Fei [28] investigated the buckling load of a circular

-U" plate with a concentric delamination.

Angle-ply composite sandwich beams with through-the-width delami.-

nations were studied by Gillespie and Pipes [19]. Reduction in flexural

strength was found to be directly proportional to the length of

delamination and varied from 41% to 87% of the pristine value.

S. S. Wang [20] investigated the buckling of angle-ply composite

a lainates with edge delamination. Based on a recently developed theory of

laminated anisotropic elasticity, the problem was formulated using

-ehni tskJJ.'s complex variable stress potentials. An eigenfunction

expansion method was employed to solve the singular elasticity problem.

',idth the aid of a boundary collocation technique, complete stress and
,. %

' isplscement fields were obtained.

A tw:-dimenslonal analytical model was developed by Chai and Babcock

211 assess the compressive strength of near-surface interlaminar

defects in laminated composites. The postbucking solution for the

delaminated elliptic sections was obtained by using the Rayleigh-Ritz

.ethod, while an energy balance criterion based on a self-similar disbond

growth governed fracture.

Simnitses, Sallam and Yin [22-24] investigated the delamination

buckling and growth of flat composite structural elements. A simple

,ne-di.ensional model was developed to predict critical loads for
.. A
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% ,delami nated plates with both simply supported and clamped ends. The

effects of delamination positon, size, and thickness on the critical loads

were studied in detail. The postbucklJng behavior as well as the energy

release rate were examined. The results revealed that the damage tolerance

of the laminate was either governed by ouckling or by the fracture

.,"ughness of the material.

Almost all the papers about delamination buckling deal with beams and

plates. Owing to its complexity in mathematics, very limited information

on the subject of delamination buckling of shells Is currently available.

TroshJn [25] studied the effect of longitudinal delamination, in a

laminar cylindrical shell, on thie critical external pressure. The shell

was assumed to be separated by the delamination into three panels. A

system oP eight ordinary differential equations were deri.ved from the

governing partial differential equations. The system along with boundary

and continuity conditions was integrated by the Kutta-Merson method with

intermediate orthonormalizatlon of solution vectors. Critical pressures

"or various locations and sizes of the delamination were found. In another

'paper [26], the above author Investigated the delamination stability of

triple-layered shells with almost the same method. Sallam and Simi.tses

-27] 3tudied delaminations buckling of thin cylindrical shells of perfect

geometry, when subjected to uniform axial compression. The delamination

region was assumed to be of constant width and covering the entire

circumrerence.

2. Mathematical Formulation
V .:

I'Te Koiter-3ud iansky [28] buckling equations have been deduced from

.those ven in the Appendix of [28]. They are given below in terms of

04j.



stress, Nijj , and moment, Mjj, resultants for a thin, circular, cylindrical

shell under uniform pressure.

, _* 1 0o Cz * x

N + N L qR + - 0
xxx xy,y 2R xyy 2 xy y

* I *
Nxx+N y + (M yy~y + x,x )  + --R M xy,x(I

q R 0 0 + xy

yy y R

, * *0

-N /R 4 + 2 M 4 M - qR (~ + -Y

yy xx,xx xy,xy yylyy yly R

* s 0  o z q=

+ - y_+_ F + q y

v q ( yy

where ,x, !yand z are rotations about axes denoted by the subscripts, qX,

qY and qz are corrections to surface loading due to load behavior during

0 0 0
buckling, q is the applied pressure c , " and 'Y are the reference

XX' yy xy

surf ace small additional strains (needed to take us from the primary

m -mbrane state to the infinitesimally close buckled state), and R is the

WI: radi us of' the reference cylindrical surface. Note also that if the terms

. denoted by a single asterisk are dropped the equations, Eqs . (1)

correspond to those obtained from Sanders type of kinematic relations [29].

wiilarly, if terms marked by either single or, double asterisk are dropped

a. one obtairsz the well known Donnell-type of equations.

nce there rexst three possiblities of load behavior during the

,,- buckling proce s 3 ], the corrections to loading assume three

dient dcty a i ng esrent expressions.

" c rr sp nd toth se ob ai ed fr m and rs ty e f in ma ic re at on [ 9]

@ 4. 3 r a l , J e m m r e y e t e i g e o' o b e a t r s r r p e
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I. Load remains normal t. the deformed surface

Y = _q(, V qZ

-qw, ; qY -q (w, - ) ; qZ (2a)

II. Load remains constant-directional

qy z
q =q = q = 0 (2b)

III. Load remains directed towards JnitJa! center of curvature

q x = qy= q. ; qz 0 (2c)

The kinematic relations are given by

0
+ zK

0 F + zK (3)

-5 yy YY Yy

-- 'Y°0 + 2zK
xy xy xy

4here the expressions for the reference surface strains, rotations, j, and

changes 5n curvature and torsion, kij, are given by

.. U, 0 = -W,
xx x x x

0 0 w v
y y R y R y

xy y x z 2 ( x -U,y (4)

xx W, xx

yy v Y

vv
F - __F

z
i_,



l'S
The usual lamination theory [32] is employed. Moreover, it is assumed

that all shell (laminates) parts are symmetric with respect to their

midsurfaces (Bjj 0). Then, the stress and moment resultants are related

to the reference surface strain parameters by

[N xxA A A0
N 11 12 13 xx

IN - A A A 0
yy 12 22 23 yy

N A A A0
xy 13 23 33 xy

,xx D1I  D 12 D13 Kxx

MD D D K(5yy 12 22 23 yy

D D2K

4 xyl D13 D23 D33 2K xy

where

N _(k)

.(h hJJ k=1 Q.j k h k- 1

N _(k)I. Q (hk  h ) (6)jj 3J - jj k nk-1

k=1

an hk and hk I denote the z-coordinate of the upper and lower surfaces of

the kth lamina in each laminate, respectively.

In terms of the displacement components, u,v and w the buckling

equations, Eqs. (1), become

. 4 : -P o". . -. .- -.- . . . . . ... r( ", ", "d'" " - % V " 55 , -".. .. . .



A 1U,xx 4 2A 13uy + A3 3 U,yy + (A12 + A 33 ) V,xy 4 A 13vxx

+ A W'x +A 23 W,+qX=0A , + A -+ w

23V'yy 12 R R y

D
A + UA ) u, A (A +D33 ) v,

13U'xx 33 12 xy 23u yy 
2 33

+ (2A 2D23 + + D22  -qv + A 23
23 2 ) xy 22 R )V R Rw

A 2 1
A22 + q) - [ w, (D +2D w, + 3 (7)
R- R 13W'xxx 12 33 xxy +D23W'xyy

D2 2wy, ] + qY 0.

__yyy

12 A 23 A 23 (
I U'x R - (A2 2 + qR) Vy

S2D 3D D A22

513 v 12 + 33 v23 22 2R @[ Vxxx + R xxy + R xyy +R Vyyy] --2

11 Wxxxx + 4D13W'xxxy + (2D12 + 4D33) Wxxyy + 4D23W'xyyy

] + qRw, + q = 0I .  22 W, YYYY

Note that these equations correspond to the Sanders' approximation [30] and

therefore all asterisks have been dropped.

?.I Description of the DelamJnatJon Problem

Thin circular cylindrical shells and panels with longitudinal

delamination over the entire length are next considered. The geometry,

loading and coordinate systems are shown on Fig. 1. The ends of the panel

3ir ? either clamped or simply supported. The location and size of the

1%% 1& 0N



delamination is arbitrary. Angle a denotes the region of the delamination,

while 3 and Y denote the location of it from left end and right end,

respecti vely.

It is assumed that under subcritical loads the delamnation does not

expand. The panel is separated into four parts (four panels) by the

delamination. Each part has a set of coordinates attached to It, (see Fig.

1.) and the natural plane of the panel lies on the XY-plane. The panel

is subjected to uniform external pressure, q, over the entire outer surface.

Let h Ci = I, II, III, IV) denote the thickness of the ith panel (see Fig.

'p 1). The nondimensional parameter h = h /h is used to descri.be the

thickness of the delamination. Let u-, vi , wi (i = I, II, III, IV) be the

displacement components of material points on the midplane of each part

(each panel) in the x, y, and z directions, respectively.

The panel becomes a complete cylindrical shell when the total angle

= R + -Y) equals 2u. The geometry is such that a membrane primary

state exists (3. . z 0) for all participating parts. Therefore, the buck-

ling equations, Eqs. (I), apply to each part. They are subject to boundary

conditions at 03 = 0 and e4  Y (see Fig. 1), and certain kinematic con-

tinuity conditions as well as force and moment local equilibrium conditions

at the common boundaries of the various parts (03 = B and 04 = 0).

%ote that all of these conditions are associated with y = constant

positions. Each part must also satisfy boundary conditions associated with

z = constant positions. These are not listed now, but they correspond to

the classical simply supported ones. They are listed i n the next section.

The various boundary and auxiliary conditions associated with y

conrstant positions, are listed below:

iPJ
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Boundary conditions at 03  0

(a) Clamped (b) Simply Supported
III III

w =0 w =0

- =0 (a) yy (b) (8)

IIIuI I I = 0 Ny = 0

U1 1 1 = 0 U' 1 'I = 0

Auxiliary Condition at 0- = 8 (0 1 = 0= 0)

I II III
W W =w

II III
= =4

y y y
I III III hi

v - (v + h 2) = 0
y

(vIII III I
Vu -( -4X h/2)0y

(uI III III h 2 )  0

.u - (u - 2 = 0

u -(u h 1h12) 0

NI  +N -N I I  = 0
Yy yy yy

N +N -N =0
xy xy xy

-MI  + NI  hI12 + MI I -NI N h/2- M =0
YY YY yy yy yy

I" I QIII II I IIl

,.N h /2 - e+ - N hl/2 Q =0
Yy(e.- )  xy,x y (eff) xy,x y(eff)

where

'A + 2M

~y(eff) =yyy xy,x



Auxiliary Conditons at 04 = 0 (01 = =t)

I II Ill
W =W = W

y y y

II (vIV IV hll/2) I0v - (v + Y 2
y

v II (vIV - IV h /2) = 0
Iv-IY

- UIV IV h l/2) = 0

U Ir (UIV IVh12) 0u1 - - (u _ %1h/2 =0

Ix

N I NI1  N IVfl + -N =o
YY Yy yy

IIT IV
N +N 1  -N =0
xy xy xy

MI  N h/2+ M - N 1 h1/2- M = 0
y yy yy yy

Q I + NI hII/2 + II NII hI/2 IV

y(eff) xy,x y(eff) xyx y(eff)

Boundary Conditions at 0, =

(a) Clamped (b) Simply Supported

IV IV
w =0 w =0

,IV =0 (a) MIV = 0 (b) (11)

Y YY

IV IV
uIV 0 IV 0

% Note that the simply supported conditions, Eqs. (8b) and (1 1b)

correspond to the classical simply supported conditions, SS-3 [32].

L204 i
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3. Solution Procedure

For each part, a separated solution i.s assumed, which satisfies the

classical simply supported boundary condtions at x = 0 and L. This is

done for the special construction for which there i.s no coupling between

extension and shear, and between bending and twisting action. This means

that or all parts

A =A D ~D 0 (12)
13 23 13 23

T.ie classical simply supported boundary conditons are denoted by

SS3: w = MxX - Nxx = V = 0 (13)

The separated solution l s characterized by

~mIx
u (x ,y ) = U (y ) o s 

-i --

u(x,y) = V(y) sin (14)
L

w(x,y) = W(y) sin MIx

L

Substitution of Eqs. (14) Into Eqs. (7), for the special construction,

Fqs. (12), yields

L1 U - LV + L1
W = 0

1. 12  13

... LU + L2 2 V + L2 3 W= 0 (5)

L3U + L3V + L W 0

31 32 33

where the Lij are linear differential operators. Their expression is given

byr 2
11 . 33 )"

L 12 -(A + A 33) L ( )'

I2A33

[%£25
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L 13 A 12 0

P0
'S* 4

L 21 (A12 A 33 L

20 AD11 A 2 -2 D22 ) (16)L- 3  + 22 (A ) ( ) (A22  R2

1 +2 L (D (A3 2D L22 -

0 (Dll E2 2 + 1 f2D33) 2
23 (A22 + R2  2 12 32

L3 3 -A 1 2  ()

D AD
-2 - D2 2  -2 2 11

32 22 R 2 12 33 R 2 R2

-2 D 1 2(D1 + 2D33L 2 ( 1 ()_ 2 33 ,

33 22 Re  2 R 2

D 2 z2AD11E": 22 -E2 ''' 11-Dl 2 (

.
2  R 2

where the prime denotes differentiation with respect to e,

L L/m7R , 0 = y/R, and A =

and R is the same for all parts.

l.imination o" U and V through the use of the first two of Eqs. (15)

a and through substitution into the third one yields a single higher order

-,-dinary diVrerential equation In W alone. This higher order equation

assmes the form

a,,

. .
i."."""% +"•% .

•
"+ Z~ + . p.,i] "+" " + .
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-8 do F6 d)6w F 4 d 2 do F (17)d d 6  de4  dO2

where the F's are constants that contain the external load q and structural

geometric parameters (Aij, Dj.j,h, R, etc.). Note that some of the F's

change acc,1rdi.ng to the case of load behavior during buckling, Eqs. (2).

The expressions for the F's are given below:
-2 2

22 L (a33-a2 3 )/R

22" L6 - 22(a 32 -a22)/R 2 + AD 11L2(a 23-a 33)/R2

-22 2 E2
(D + 2D- (a- 2a3 )/R2 A a

12 323 23 3322 3

2~ -22
F 2 (a3 aa (D 2 )(a2 a )/R + D a /(R )  (18)22 33 23 1 33 22 2 3 213

"+ AD 11 2(a22 a )/ 2+ D 22 (a 31- 2 )/R 2 A 12Ta 3

-*-2 2 -2/22

A K L (a - )/R + (D + 2D ) (a -2a1)/R 2
11 21 aD1 12 33 21 31

:LC (a 21 + a32 ) 11 a32/(LR) A12 a12

A'. ALa31 + I 1 31 /(LR) - A La

"J' D 1  D D 1

" 33 2 1 2 O

•L Q,R
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3(( I A D11 D22 -3
a L A 0o +- )(A 2 -) (A +~ A~ L (A

a12 12 I R2  12 ' 33) A2 2

AD,,2

( 12 +1  2D 33)/R

.13 (AI + A 33) D 22L3 /R2

12 33 22- 
2

a A (A + (Dl ) 2 + (D 2D3)/R

21 1 22 \ 1 R2 12 33

AD" (A A LA
S 0 2 12 33

' -2
AD E 2 +lL A 1  L

11 -4. + (D A2D 22
-. - =A33 (A + I L 2 D 2 3 ) (19)

22 ' 22 R2  R 2 R2  (19)

a 23 A 33D22 L4/R

0 -2
a,=-A A + 1--,f,- 31 11 A33  R2 (i R2

a 3 22

: "" 0

D'', 13 A 2 -2  + D, D 3- -3 + D 1 L A 3 3 2

3 A 11 22 2 L (A33 2 12 R2

-(A )2 -2(A12 A 33 L

"l 22 22

"T-e coljmn ve'.tor in the expressions for ajj denote the load cases as
cae as

,,, . ... ,w,1 . .L 2
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The solution procedure is similar to the one described for rings and

arches in Article 7.3 of Ref. 34. The number of equations is higher, the

equations themselves are more complex, and a closed formed solution is not

expected as Jn Ref. 33. Nevertheless, the overall procedure can be

followed and a numerical estimate can be achieved.

The basic steps are as follows:

First assume for W(O) a solution of the form

W = C ere (20)

Since the order of the equation l s eight, then substitution into Eq.

(17) yields an eighth degree polynomial in r. Thus, eight roots are

expected for each geometry and load level. If the eight roots are

distinctly different, the general solution for W(O) is given by

8 r.B
W(e) = C. e (21)

i=I 1

Note that if double roots occur the form of Eq. (21) is modified

accordingly.

The form of the solution for U(e) and V(o) is similar to that of Eq.

(21), or

-U() - A e

(22)

'."8 r.0

.""','(e) = B1 e

Note that in deriving Eq. (17), U and V were eliminated through

operations on Eqs. (15). The intermediate steps that lead to this

e i.
~elimination yield

* 4 -,' - .. . - 4 4



- V."

.1.(L 21 L 12  L 11 L 2 2 U-(L 13 L2 2  L 12 L2 3 )W

(23)

(L 21L - L 11L 22) V (L 11L - L 13L) W

Substitution of Eqs. (21) and (22) into Eqs. (23) yields the

expressions of A i and B i in terms of Ci, or

.' 'Aj = .C.

B. n.C. for i = 1,2 ...8 (24)S" ) B . J. 3j . ,

where

2 14 2 14
(all + r a r a )/(a + r a + r a

11 i. 12 1 13 31 1.32 i33

(24a)

3 5 2 r4
(a rra =ra )/(a + r a

21 1 J- 22 2 .23 31 + r32 jr33

Thus, the solutio for U, V, and W I s given J.n terms of eight constants Cj,

while "j and n i are known.

r.0~
U (e) .Cje r

1=1

3 re
.. , .. V (e) = [ n C e (25)

8 r.

:,w (e) -= ~ C.e 1

There exist eight unknowns, Ci's, for each panel. Since there exist

rour panels be .ause of the delamination, the total number of unknowns is 32.

F or the 32 boundary and auxiliary conditions, Eqs. (8)-(11), leads to a

system of" 32 linear homogeneous algebraic equations ir. the 32 unknowns. A

'cntrivial solution exists if the determinant of the coefficlerts vanishes.

-. .-- J r-. . . . - -,
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This is the characteristic equation, which yields the value of the critical

load. A numerical procedure has been developed to accomplish this.

For the sake of completeness, the boundary and auxiliary conditions

V] are presented in terms of the respective displacement functions, u, v and w

Lsee Fqs. (8)-(11)].

Boundary Conditions at 03 = 0

(a) Cla.ped (b) Simply Supported

III III
' u 0 u =0

- IlI .III u~III + III (v@ wIII =

v =0 A 12Ru, A22 (v, W) 0.

12 xx 22 8

D["-IIK wil

.w .w (a) W 0 (b) (26)

III 2 III III III III
- = -RD 1  w, -h /2 0

.- . Au:<iliary Conditions at 83 6

SI II III

(v , v w II III
, = (v- , = (v - w,e)

"'"ii iI 1 I I hl/2~

: .11."1 - I ( - w, 0 ) h/] = 0

II I

. h 0/2] 0

w.'. ' - j ,' /
I x

.1o

lq

............................................................. A . '



A(V, + [ RA12u, A 2 (v , 0 +W)

A1u, + A,2  (V, + 0

( 4Rv, )] + [A 3 3 (, Rv,) [A Cu, + Rv, )l 0

22~ x (w,~ - v, lI + [A12u, + A2 (V, + W) 1 'hTT/2
1," R22 22 0R

Wx iL.? 22-, V - [A 1 u, + 22 (V, +W) -] h /2
-1 x wA 2 x 2 '0R

-) (w, - v, 0
12 'xx -2 00 0

- 1 D (w, - , 4D~3  W, 0  2F ,x
-" .W xx:' R3 22 000 '380 x

4D IIWIV
w~ + D, hw /2xx R

xxl 3 22 (w, of v- 4 33 [ w, -- *

400 2R 'x

I')

xx22 0y 33 [ w," j v, x



Auxiliary Conditions at 01 = 02

k I II III
~~W , W

(v - w ) (v - W, L (v- w )III
'0

I r I 1 IV IV h ] = 0
-v (v - w )h/2 0

T IV IV I
V- Ev - (v - W 0 h /2]

iI IV Il1
u - Fu - w, h 2] = 0

' * I. V IV I
- 4 h /2] 0

I ) II-

S1, + A2 2 (v, + w)] l  [RA 12u, 
+ A2 2 (v' , w)

LA u + C 4)] =0

12 Alux + A22 (v, w - 0

-A3  + x )l - [A , RVx) IV 0

SV,x 33 x 33( 0

-2 2 - (w, V + [A1 2 U,x 2(v, + w) 1 ] hI /2-" . ]-D12 × R2(wao 0 12 A22 0 " /

R

.- -, + 22 (w, V, ] [A u, A (v, w) 1 1 /2
- xx R2 o - 12Ux A22 R

-,.a

-2 2 IV

* R

-4D33 
- 1

1 ) 3  22(w - ) W'xxo 2R xx

x"x - V,0 w,-OqO

- .,- A
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+, A hr2D W 1 )- (w, -v, ~
33 " Ox V'xx) /2 - 12 R xxo R3 22 '60 De

4 R W I II OI + v )]lhl/23-L 3 [ - W'xxO 2R V, - [A3 3 ( R U, 6  'x h

[0 I I - ] IV 4 -I w1 1, ~~~~ .. I , + 2(w, v 4D W, w7 - -v ,

12. xx R3  22 606 '66 33 R 'xx& 2h xx

Boundary Conditions at 04  =

(a) Clamped (b) Simply SuPnnrt e!

:. , IVIV.%< u"= 0u --0

IV IV IV IViV A Ru, A (v, w) -' 0
v = 0 A12 x A22 '6

(a) (b) (29)
IV 0IV 0."w =0 w = 0

IV 2 IV IV IV IV
(v -w,)) =0 -R D W, -D (,

-V .' u12 xx 22 (w 6 6  v,O) = 0

All of the above conditions can easily be expressed in terms of U(e),

7(e), and W() instead of u, v, and w. This i.s so because in all boundary

and auxiliary conditions, Eqs. (26)-(29), j.f the order of di.fferentiation

with respect to x, of v and w J.s even, the one for u is odd, or vice versa

~MTx

-see Eq. (14)]. Thus, in each one of the conditions either sin-T -

LL.. cs is the common fector, wchdoes ntvanish orall x
co-L hih otfo

A computer program has been written i.n order to obtain critical

n conditions for all geometries. The Georgia Tech high speed digital

cooJiter, CDC Cyber 70, Model 74-28, was used for generation of results.

.1 2. "
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4. Numerical Results

Results are presented herein only for a special geometry and only load

case I, Eqs. (2a).

The geometry Is an Isotropic geometry (as in [251) with the

delam7ination parallel to the shell reference surface and extending along

the entire length of the panel. Moreover, the panel Is assumed to be very

long and thus the solution is not affected by the x. constant boundary

conditions. Finally, the boundaries at e = const. are taken to be clamped.

The results are used to study the effect of delamination position

(through the thickness), h, and of delamination size, a (see Fig. 1). Note

* that the results correspond to = Y for the case of panels.

7ne results are presented both In tabular and graphical form, for a

co,..plete circular shell as well as for panels of angle fr and /2. Critical

load parameter values, -A (A = qR3 /D), are shown in Tables 1-3 for various

values c' a and h. The mode is either symmetric (S) or antisymmetric (A),

and it is designated as such in the tables and on the figures, Figs. 2-4.

For the complete cylindrical shell, and for midsurface delamination

n 0.5, the critical load parameter Js 3 for the perfect configuration,

and it decreases to 0.75 when the delamination extends to the entire

cJircu7erence. It is next shown that this is a reasonable expectation.

it is assumed that before buckling the circularity Is maintained,

,.,, there is complete contact or parts I and II (see Fig. 1), and if one

_,t., hy , q, q and the pressures on the various parts then

:--,

.tO1  .
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Voreover, in the primary state

" 2 q.
R. q

3 I, II, III and IV,

(31)
I II III IVRi

W = w = w I w , and R

* Then, before and up to the instant of buckling the pressure loadings on

parts I and II, qI and qII are related to the applied loading q, through

Eqs. (31), by

C. Ih (I - h) q (32)

l4 A is defined as
A = q 1 R3 / Di = I, II, III, and IV (33)

n

AIII IV R 3/D"..= A q R /D

I qR 3/I = (hq R3 /DI) D _ 2 (34)
A- D D D -2

h

A 1 IIR 3/DI -2

_ / A/(l-h)

Clearly then, when the cylindrical shell Is completely delaminated

* A -2 1
or cr

OI
and -3.0; therefore X =r 0.75 for h = 0.5.or -30;teeoe cr

C- te may say at this point that the residual strength of the completely

hel a-inited thin cylindrical shell is equal to

2 -2A toa [h +(1-h) ](-3)

T-us, for h 0.5 A tal=- 1.5, while for h 0.1

,total - 0.82(-3) -2.46.

* *
e



The results corresponding to the complete thin delamnated cylinder

are shown in Table I. Note that when a = 6.2 (close to 27) the value of

the buckling load parameter Is (0.1)2 (3) or 0.0003. The same results are

presented graphically on Fig. 2, while Fig. 3 shows the complete curves

corresponding to symmetric and antisymmetrJc buckling but only for h = 0.5.

Furthermore, there exists two important observations. One is that the

critical load associated with the very small h-values should be viewed as

ieasures of local buckling and not as measures of load bearing capacity of

the overall structure [25]. The second observation Is that In most cases

the buckling mode of the two parts that are separated by the delamination

(parts I and II ; see Fig. 1), i s an anti.symmetri.c mode of the type that

suggests contact over a certain portion and no contact over the remaining

one. This suggests that the postbuckling behavior for shells with h will

be different from that of shells with (1 - h), although the critical loads

are the same for the two (see Table 1). Moreover, for each geometry,

o regardless of h, the transition from buckling to postbuckling behavior will

require accommodation of the predicted (buckling mode) contact.

Results for clamped panels with = and 7/2 and symmetric

delamination (a = -) are presented in Tables 2 and 3 and on Figs. 4 and 5.

All generated results correspond to an antlisymmetrlc mode. For these

results also, as In the case of the complete cylinder, the critical load
.-

varies from the perfect geometry critical load [34,35], when a is very

-2 2:all, to the value of hAperf [or (1h) I perf. when the panel is

% rompletely delaminated (see Fig. 1).

0 4
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From the above results it is clear that further and more detailed

.studies need be performed before we fully understand the complex response

of delaminated, curved laminates.
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Table 1 Buckling Load for a Delaminated Circular Cylindrical Shell

0.5 0.3(0.7) 0.1(0.9) 0.01(0.99)

0.000 3.00000(A) 3.00000(A) 3.00000(A) 3.00000(A)
0.2 2.88461(S) 2.86341(S) 2.93602(S) 0.20186(A)

0.4 2.41778(S) 2.57496(S) 2.87696(S) 0.05044(A)

0.6 2.27045(S) 2.46545(s) 2.23770(A) 0.02240(A)

0.8 2.23305(S) 2.42099(S) 1.25739(A) 0.01260(A)
1.0 2.19743(A) 2.40772(S) 0.80364(A) 0.00803(A)
1.2 1.94698(A) 2.3167((A) 0.55715(A) 0.00557(A)

1.4 1.76893(A) 2.12619(A) 0.40858(A) 0.00408(A)

1.6 1.65424(A) 1.95652(A) 0.31218(A) 0.00312(A)

1.8 1.58796(A) 1.78177(A) 0.24614(A) 0.00246(A)
2.0 1.55616(A) 1.57452(A) 0.19894(A) 0.00199(A)

2.2 1.54597(A) 1.35834(A) 0.16406(A) 0.00164(A)
2.4 1.50758(S) 1.16633(A) o.13757(A) 0.00137(A)
2.6 1.38708(S) 1.00618(A) 0.11701(A) 0.00117(A)

2.8 1.29118(S) 0.87462(A) 0.10075(A) 0.00101(A)

3.0 1.21859(S) 0,76648(A) 0.08769(A) 0.00088(A)

3.2 1.16706(S) 0.67713(A) 0.07706(A) 0.00077(A)
3.4 1.13386(S) 0.60284(A) 0.06832(A) 0.00068(A)

3.6 1.11579(S) 0.54070(A) 0.06107(A) 0.00061(A)

3.8 1.10883(S) 0.48847(A) 0.05501(A) 0.00055(A)
4.0 1.10645(S) 0.44445(A) 0.04993(A) 0.00050(A)
4.2 1.03733(A) 0.40729(A) 0.04566(A) 0.00046(A)

4.4 0.97570(A) 0.37596(A) 0.04207(A) 0.00042(A)
4.6 0.92187(A) 0.34970(A) 0.03907(A) 0.00039(A)
4.8 0.87585(A) 0.32788(A) 0.03658(A) 0.00037(A)

5.0 0.83751(A) 0.31006(A) 0.03455(A) 0.00035(A)
5.2 0.80665 (A) 0.29590(A) 0.03294(A) 0.00033(A)
5.4 0.78308(A) 0.28514(A) 0.03172(A) 0.00032(A)
5.6 0.76645(A) 0.27756(A) 0.03086(A) 0.00031(A)

r 5.8 0.75620(A) 0.27287(A) 0.03032(A) 0.00030(A)
6.0 0.75131(A) 0.27061(A) 0.03007(A) 0.00030(A)

6.2 0.75003(A) 0.27002(A) 0.03000(A) 0.00030(A)

rio

(S) SYMM. Buckling Mode
(A) ANTI-SYMM. Buckling Mode
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Table 2 Buckling Load for a Delaminated Panel of Angle IT(rad.)
(Clamped Boundaries)

(V h 0.5 0.3(0.7) 0.1(0.9) 0.01(0.99)

0.000 8.00000(A) 8.00000(A) 8.00000(A) 8.00000(A)

0.2 7.90294(A) 7.94443(A) 7.98782(A) 0.20187(A)

0.4 7.18972(A) 7.56860(A) 5.03907(A) 0.05044(A)

0.6 5.81200(A) 6.71586(A) 2.23788(A) 0.02240(A)

0.8 4.64551(A) 5.71862(A) 1.25744(A) 0.01258(A)

1.0 3.94345(A) 4.86852(A) 0.80366(A) 0.00804(A)

1.2 3.58022(A) 4.10046(A) 0.55720(A) 0.00557(A)

1.4 3.43175(A) 3.31277(A) 0.40862(A) 0.00409(A)

1.6 3.40141(A) 2.63529(A) 0.31223(A) 0.00312(A)

1.8 3.39324(A) 2.12076(A) 0.24619(A) 0.00246(A)

2.0 3.31556(A) 1.73589(A) 0.19898(A) 0.00199(A)

2.2 3.13397(A) 1.44421(A) 0.16410(A) 0.00164(A)

2.4 2.88519(A) 1.21911(A) 0.13762(A) 0.00138(A)

* 2.6 2.61981(A) 1.04247(A) 0.11706(A) 0.00117(A)

2.8 2.36815(A) 0.90161(A) 0.10080(A) 0.00101(A)

3.0 2.14240(A) 0.78775(A) 0.08774(A) 0.00088(A)

3.141 2.00056(A) 0.72026(A) 0.08003(A) 0.00080(A)

(S) SYKM. Buckling Mode

(A) ANTI-SYMM. Buckling Mode
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Table 3 Buckling Load for a Delaminated Panel of angle 7T/2(rad.)
(Clamped Boundaries)

S h 0.5 0.3(0.7) 0.1(0.9) 0.01(0.99)

0.000 32.59514(A) 32.49695(A) 32.43374(A) 32.43112(A)

0.2 29.21156(A) 30.70972(A) 20.16636(A) 0.20186(A)

0.4 18.67281(A) 23.12066(A) 5.03951(A) 0.05044(A)

0.6 13.92583(A) 16.33205(A) 2.23812(A) 0.02240(A)

00.8 12.87370(A) 10.54976(A) 1.25768(A) 0.01258(A)

1.0 12.72554(A) 6.99228(A) 0.80391(A) 0.00803(A)

1.2 11.46249(A) 4.93227(A) 0.55745(A) 0.00558(A)

1.4 9.57106(A) 3.65625(A) 0.40889(A) 0.00409(A)

1.57 8.11394(A) 2.92168(A) 0.32464(A) 0.00325(A)

.1/a(S) SYMM. Buckling Node

(A) ANTI-SYMI. Buckling Mode
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EFFECT OF BOUNDARY CONDITIONS AND RIGIDITIES

ON THE BUCKLING OF ANNULAR PLATES

G. J. Simitses and Y. Frostig

Engineering Science and Mechanics

Georgia Institute of Technology, Atlanta, GA. 30332

ABSTRACT

The buckling analysis of multi-annular plates, witn different

properties, is presented. The geometry may include ring stiffeners at the

common joints and the plate may be supported in various mariners, simple
supports, clamped supports, etc., at the loaded outer edge. The loading is
uniform radial compression and static. Several parametric studies are
performed in order to assess the effect of geometry, material properties of
the annular sections and of the ring stiffness. Moreover, when rings are
present, the rinb geometry is modelled both as a curved beam and as an
annular plate, for comparison purposes.

INTRODUCTION

The stability of multi-annular plates with or without ring stiffeners

is being considered. Most researchers have investigated the buckling of a

single annular plate (with or without a rigid inclusion) when subjected to,

crimarily, a uniform stress field.

Several studies [1-81 nave been reported in the open literature for

ciraular and/or annular plates under various loads, boundary conditions and

thickness variation; see also their cited references.

M.ioreover, a few studies report on stiffened configurations with:

special stiffening [4,9,10].

In all of the above studies, certain simplifying assumptions were

made, such as neglecting the extensional stiffness of the ring stiffeners

[10], which may or may not have a significant effect on the critical load.

, oreover, the annular sections were considered to be homogeneous and of the

same material, by virtually all investigators.

The present manuscript deals with buckling of multi-annular plate--

with different material properties and thickness and stiffened or

4,%



,nsti ffened by rings at the common joints. The Inplane loading is

r-x4-3y: '..etric and several combinations of transverse and inplane boundary

i2e:itions are considered. The mathematical modeling accounts for the

extensional rigidity of the rings, in addition to their torsional and

tenuing stiffnesses.

MATHEMATICAL FORMULATION

Th.e equations governing the primary state for each part are; (see

0

''rr r 0

:': N°  = 0
N 0,0

0.e bu2:king equation for each part of the plate is:

D o4w N o W'o

D7 w = N w, rr + N (- +- ) (2)
r r

.... . .. -e N , are primary state stress resultants in the radial and cir-

:-.7.ferential directions, respectively; w is the transverse displacement;

) ( ) 0are partial derivatives with respect to radial or angular

cordinates and D is the flexural rigidity. The geometry and loading are

s-:;.4. on figure 1.

Te inplane stress resultant distribution is solved first, using

',uations (1). The constants are determined through continuity conditions

-ia t.ne co:r.mon joints, see [11]. In case of a stiffened plate, the

i- >.n-ity conditions include the deformation and radial stress resultants

if tr.-e tiffener (see [12]).

7he ir..lane stre3s distribution in the various parts of the plate

- -n-.+s :n tre extensional rigidity of the various parts, in addition to

I'4

'I'.
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the extensional rigidity of the stiffener. Even ir. c, sc; .

. is homogeneous, but with stiffeners, the stresr IistriLuti,

constant as suggested by Rossettos [10]. The exact distritutiDr, n. : .

the extensional rigidity and location of stiffeners. The buckl~i. e sti:n

for each part is given by equation (2). The equation is solv, by asu.irg

a separable solution of the form:

w(r,e) = F (r) cos nO
n=O. n

wnere Fn (r) is the deflection function in the r direction f-o tht rt'

buc'Kling mode.

The constants for the transverse deflection are calculated uulng

c,. ontinuity and equilibrium conditions at the common joints end Louniary

conditions at the edges; see [113 for the unstiffened plate. in the case

Df a stiffened plate the continuity conditions are applied also to th>

stiffener. The equilibrium conditions include the contr. -utic(--. of" the

*. stiffener, related to their bending and torsional rigidities; s.e 1.I" -.

in the ca,-e c' a plate with a ring of rectangular cross-section, it IF

possible to analy-e it by considering the entire system as a

.".ulti-anmnuilar plate. In such a case the dimensions of the recu~ar

ring must be such that plate theory is applicable to alllte

(inner, ring and outer). Here, the various ring stiff'ncsec. c-in

expressed in terms of the ring plate material Lreperties

thickness tR. In this case, if the beninig rlgidity i- I I x- I

torsional rigidity is also fixe: (;, ,dig nr, y en thE P s_ .

A numerical exanple i r,- snt, it. i- se nt

results ar- compared 'Itr tn;se based o: r ,t1er"c ':-

.

% %
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NUMERICAL EXAMPIES

.4 comnputer program has been developed, and it Is descritcd with

sufficient detail in [11]. With the aid of this program several parametric

studies are performed. The results consist of critical loads,

corresponding to axisymmetric (n = 0) and asymmetric (n = 1) buckling

. aes, for molti-annular plates. The geometry is a two part plate, one

"'_ nu ar and one circular, with different material properteis, with ur

.,t-out a single ring stiffener, located either at the edges or at the

ci..... joint.

e, Tne stiffener rigidities are expressed in a non-dimensional form as

fol iows:

EAR EIR

t( - 2 ) r E t3/12 (1 - )r
T 1 0

were, EAp, EiR, GJR are the extensional, flexural and torsional rigidities

,: the ring, respectively. El ,tl,vl are the modulus of ,lasticity,

....... nss and Poisson's ratio, respectively, for the outer plate, and r o is

. tne outer radios of plate.

Before discussing the numerical results, we present the influence of

'~.~- extensional rigidites of the various sections, including the one of t-e

*4
f fe nren r on the distribution of the primary (prebuckling) stress

0

r!." .3
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Primary State Distributions

The primary state is solved for first, by equations (1). The presence

of a stiffener, be.'ause of its extensional rigidity, influences the stress

distributions. The parameters to be considered are the ratio of thLe

moduli, E2/E], the stiffener rigidity, aR, and the position of common

joint, r1/r0 .

The constant stress resultant of the inner plate is derived

analytically, by using equations (1) and the continuity conditions.

E uI

rr2  rr

(2 - )

0

Where u /u 2 (1 v (1 - v) (E /E) (1 + v) ( )
1 o 1 1 1

(8 - ) ] r /r ;(6)+ C, 6 (B2 Bl 2 ro I
R 1 11 ci

kD
v - Poisson's ratio of the plates (v v2  v) ; and N rr 20

r
0

applied at the outer edge.

In case of a plate stiffened by an edge ring, the constart stress

resultant of the inner part becomes

0
rr r IN [ 1 aREI /E2  (1 + v)] (7)

The effect of the stiffener extensional rigidity on th.e stress

resultant distribution of an annular plate, stiffened by a single ring it

tn - inner edge, appears on figure 2. As c, is increased the stres

1i4S"
J,"-. . '- . .o . ' .- '°'d~r- '- ' 

.
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E E2/E 1= 0.0

1.0 Z m 3 1 .0

c' W

,... IZ0.802

0 L 0.570,:F.-:.~ O:O- o.50

,,% ,"II

.0.0

:: 0.0 I I_ .I I I I

0.0 0.2 0.5 1.0

r 1 /ro

Fig. 2. Primary radial stress distribution of a stifferied Lnnu'1-r , ae
Sr 1/ro = 0.2).
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" v: 0. 30
OR: 0.08

I .015
1.0 -- 1.00.933

£_ /E l - 1.0 0. 8

;.E L.E/E = 0.5
-. IZ

2' L
":'[' 0. 756

0.56

L E 2  01 .:O I

0.300

cO. 0 I , , I I I ,,

0.O0 0.5 1.0

r r 0
*g. 3. Sztress djistriution, N of ring-stiffened two part plate.
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r -5:I -r~zz32s trirougiihut the annular plate. Note that if there is no

.. ., . radial stress resultant is zero and increases

il r_.t : ! ta the value of the applied loading, Nrr. When c 0.

-frj, oe of the ring, the value of N close to the

rr

eza.r~ a a gr:ter than zero -nd its variation with position (r/ro ) is

-. tri - -fc': a :uilti-annslar plate, stiffened by a ring, the stress

. :it on epenJs on aR and ring position rl/ro, but also on

e - :,f 0 t.ne two plate sections, E2/EI. Figure 3 describes the

:-- i.n for a tw-part plate stiffened by a ring at the commor

.r.t ,ta< as r'l'r 0  0.7). The ring extensional stiffness parameter is

:::n - -_ =. a "5 or-esw ding to light stiffening L121) and E2/E=

.. . otc tihat for E 2 /E1 = 1.0, the stress resultant

we- S ;e towards tha2 ring, then there is a drop (because of the

-<1 ;r'- 3,:":ness cf the ring), and finally it becomes constant for the

,:. :. For £:/7, = 0.5 and 0.1, the only difference is that the

: .L ~tan: distribution decreases (outer annular section) as we move

." -...... ted iti-nnular Plates

-.- b-oart plate is simply-supported and loaded by a radial

•- -ne Ioading at the outer edge, The case of a stiffened

-. it wtn a single ring located at the common joint, is also

- :e calculatea for the following parameters:

- 'a; n = , 1 (modes); tI  t2 ;

/ .J, .1 ......1, 0.5, 1.0;

°,, ,,, ,

0~~ ~~~~ -,--- - - -- - --09
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-'.1. :.nfigurition the following parameters are considered:

J; ~ ; ~ 12 (axisym.)

1- 1; . ; 1.2; YR = 0.6 (asym.)

e torsional ring stiffness, ri does iot affect axisymmetric

.s~ts for the unstiffened plate appear on figure 4 for the

I bu11ling mode. For the same mode, the results for the

- i:'igurat ion appear on figure 5. Figures 6 and 7 describe the

, .s:'oo in. L to the asymnmetric moJe (n = I), for unstiffened and

_" _.: .=: - -. 0p res ectively.

............. . w rcncusions can be drawn from these figures:

... - load (lowest eigenvalue) corresponds to the

,:.:. _ *1:.::e, :or both types of plates.

c. . r. load for an unstiffened plate is decreasing as the

"'i -. re -aii increases., This is true for both modes. In the

, -.. :.., figure 5, the critical load increases with rl/ro, for r 1/ro

................ .t i drases, for r1iro - 0.7. For a stiffened annular

.-- '' ', the critical loaci increases continuously with increasing

D-a t.-art unstiffened plate (0 < E2/El 1.0), the critical

-_ an: rl/ro. For extremely small values of E2/EI (it

-.-- . .... , v e of 0.1 and 0.01, and the observation probably is true

S,- - in the range of 0.1 < E2iE < 0.5 the behavior

. .- tis :,f the radii (rl/ro). For EC/E .1, as long as

a P t: o 0proxi,1ately 0.55, buc k in see:.s to tc tri gere

-nnular prt arid the critital load i a little larger tha-

, ... 2 ia - (pure annular late) . ; t' ther

. * . .-"-



v=0. 33

L~. 5.0 -

L 4.28 4.O2

E /E2..I5

2. 1

0.0 0.5 1.0

r'1/r

'oit.coI iOj for a two part plate (3.s; n 0)

4 .-



2 :0 3 /E 1 : 0. 0

~.N i 10.0 axR= 0 08

4..PR= 1.210

L
L

44 4 C

4.20E2EI=01

12. 3E
E 2 /E 1 0.01

0. 6E
0 . 3 C

0400o.5 1.0

.0.

5:: C:ritical loa..i for a ring-stiffened plate (5. s; n C)
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E / 10. 0

V=0. 30

20.00 0
2 1

2 13. 9~

7.38

2. 12
0.0 0.94

0.0 0.5 .0

7-.. 7. -rlti~al lc3ads for a ring-stiffened plate (s.s; n 1



':or, r r - values larger than 0.55, the critical load is smaller

.: St of the pure annular plate, and buckling is triggered by the inner

and .re flexitle part. It appears that for E2 /EI = 0.1, the corresponding

: .' -hes the value of 0.4282 as r 1l/ro approaches unity (a complete

ar p;zte with bending rigidity equal to one tenth of that of the case

n tne stiffened case, the central part triggers overall buckling

^ .n 'tiffener s located between 0.7 < rl/r o f 1.0. For values of

..7, te modulus of elasticity ratio, E2 /El has small influence,

. .. _ical 'cads are nearly the same as those corresponding to the

..... .... ..e:7 nnunr piate. For r 1/r, S 0.7 (stiffened plate) the decrease in

.r; d e nds on E2 As the inner part becomes more

* fI±:KiL-, d.? "dro'" in the critical load becomes much steeper.

-j stiffene! plate with an outer edge ring (see figure 5), the

-.... .. ~.- e not converge to the expected value of 4.20 D1 /r , but

v ue This is so because of the extensional rigidity of the

3- - e':ation (7)).

0 K I E/ 1.0, as the stiffener approaches the plate edge,

.......... ...... . In effect of the ring is more pronounced and buckling occurs
-"[ .... t:,e i (inner part) is partially clamped.

.ra , ne stiffener geometry (CaR = 0.08, 8R = 1.2 and YR 0.6) is

,- n.e study was concentrated on the effect of properties of the two

--. .t5 (2/EI 1 and the stiffener position, r 1/r o , for both modes (n =

* , t..e effect f stiffener rigidities is studied for two E2/E I

S I.) for both axisymmetric and asymmetric modes. It is

°5.



-A,..30.0 ao. =o
v:O. 30

E 2 /E: 1.0 aR 
0 0 1

20.0 -- E2/EI1 0. 1

aR:O. 1Rz 10

L.

-" 10.0

' 4.2 
4 .52C

0. 74

0.0 0.5 1.0
0.0

r1 /rO

Fig. j. Eft'ec of flexural stiffne33 on critical loads

V) (two part stiffened; s.s; n 0)
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=ce, though, far only one value of aH ( = 0.10). The geometries are

2 V-2 1'.' d b y

* n 0; aR = 0.10; v = 0.3; E2 /E1  = 1.0, 0.1; and BR 1,2,5,10

a : syr.7etr i)

2 ., 0.10; v 0.3; E2 /Ej = 1.0, 0.1; 6R = 5; and 'YR = 0.3,

]1 ..:, ..?, 1.0, 1.5, 2.0.

T:e results are shown on figures 8 and 9 for n = 0 and n = 1,

"-" -0 s:-22ti rel y.

Toe general trends are similar to those describud previously.

.e. ver, the ring position corresponaing to the maximum critical load is

-11 . er for the smaller ratio of the moduli. For E 2/E1 = 0.1, it is close

- = 0.73. Note that the maxima critical loads are small for the

"" er ratio of the moduli, too. Furthermore, the bending stiffness of

. has a stablizing effect. The higher the stiffness, the hiplier the

ria I load. Note that this effect is more pronounced at the higher

cf rl/ro (rl/ro > 0.3). On figure 8, one can also see curves of

t a-' load vs. ring location, rl/ro, for E2 /EI = 1.0, uR = 0 and various

':---Oes ,.hen these curves are compared to those corresponding to az,

P. - ". , they -epict the effect of neglecting the extensional stiffness of

P~~ ...... o(--e ]). Even for this low value of cR (= 0.10), this effect

Scre so3starntial at the higher values of both rI/r. and r. Finally,

- t;.e ring is lo-ated at the outer edge, the critical load does not

..:: ei-,al to 4.2 D/r 2 (for E2 /E1  1.0), primarily because of accounting

SI : ar x. ial stiffness of the ring (see equation (7)).

r 9 dJ:icts toe same results, but for n = I (asymmetric mode)

- .• , -: § .3 and various values of YR for both values of the ratio of

-- I, .].0 and 0.1. Clearly the loads are higher than those

, J. - -% .< ;.i < .'2 < :. .-- i-i > > i . - i , - --- .. < . .,; .< .,- ., -- -. , ,- .. . i ¢ - -
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.4,

SU: , therefore, buck!ing is governed by the axisymmetric

. si:cwn on figure 9 that the higher the value of the

- r:: . oti:'fr.-s prameter, Yi, the higher the critical load (for n

m.
• l :-- -. . ti-Anui r Plates

-.cmt-r ex:.ple consists of a multi-annular plate clampuu nd 2oaded

, ". e: el. T. load is radial and axisymmetric. The parameters

-- " 1 3" case are:

E2!E I  0, 0.1, 0.5, and 1.0;

0.0'3 and 6R = 1.2; and

_:r n 1, .R .O-O and 6R = 1.2 and YR = 0.6

, are observed in the simply supported case are mostly the

. :.e . results are presented for the unstiffened plate on figure

,:, -: . :igres 11 and 12 for the stiffened plate.

S-. ~r ison between the unstiffened case and the stiffened one shows

e t stiffener increases the buckling capacity of the plate.

rte presence of stiffening, when the ratio of the moduli is

, ' tuckling is triggered by the central part and the critical

S * reaing as the common boundary approaches the outer edge.

.;t- .at on figure il, results corresponding to the annular plate,

., ar' only snown for r 1l/ro < 0.55. It has been shown [11] that

r,igher (n > 0) buckling modes govern and thus the critical

3: n to higher value3 of n.

-f 3tiffening, figures 11 and 12, shows critical loads

r plites (u2 /EI = 0). From figure 12, one observes

. v-rn-d Ly the axisvmmetric mode. This is true for the

M* & r,,r 0 J.7[.

V".'
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xi--' inner plates, E2 /E 1  x 0, but with 0 < 2/EI - 1.0, and a

"... t- c::.on joint, buckling is governed by the axioymcetri c

. cs of a %ing-stiffened Plate Using Plate Theory.

':os section a different approach is used for the analysis of' a

;7.r.encus oircular plate stiffened by a ring somewhere between the cent<:.

e e. 7e stiffener, in this case, is modelled by a very narrow

r plate, with different geometrical and material properties. The

naysis carried out is that of a three-part plate, where the outer arid

o:rsl Parts nave the same properties, and the middle part represents the

To-c type of analysis is correct, provided that plate theory

- . :-.ct~on- .hod true for the ring part, as well. The ring plate geometry

.:p-,,erties were adjusted in order to yield the following values for

.- y:eCf stiffnesses. (This was done in order to be able to compare

.. -!::e 2 t results with those using ring stiffeners).

a.. 0.1 with ER 10

for n = 0

0.2 with 4i 20

.' > -. 0.1 with , = 1.0, YR 0.35 for n = I.

. a:e shswn graphIically on figure 13 for n 0 (axisymmetric) and

fI.- r

. . . .. . .. . . . . ... .. . .. .. . . .. . . .
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ns s from these figures that, the comparison is fairly good.

.j :'ea-ize that in one case the stiffener is considered as a curved"'S

.in the ather as an annular plate.

CONCLUSIONS

U-.nt he -. any conclusions of the parametric studies one may list the

. .;wnio . .crtant ones:

Stiffening, regardless of boundary conditions at the outer loaded

--_ s, : i s a stoilizing effect. The higher the bending stiffness of the

S.<.,:r-.e higner the critical load. Moreover the extensional ring

- :npr~ves the critical load. The effect of bending stiffness is
S

._?. for ring locations higher than 0.3 r o . Similarly, the effect of

. cT- . ring stiffness becomes important for ring locations higher than

T ese 2onclusions are true for simply-supported boundaries, but

o eres al aso true for clamped boundaries.

2, ':deliing the stiffener as dn annular plate yields critical loads,

-.... <are close to those corresponding to modelling the ring as a curved

:..L>te trat the latter modelling is more general, because it can

..... o& te various ring geometries instead of only rectangular cross

., .ie ;e of a single ring, for stiffening a circular plate, implies

.n otimm. position. For a homogeneous plate, the optimum position

e:;,nds to approximately r 1/r o = 0.7 for simply supported boundaries

r , 'r 0.5 for clamped ones. These optimal locations change when the

- rto of tr~e plate have different properties.

A4-
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BUCKLING OF LAMINATED CIRCULAR PLATES

Yeoshua Frootlg" and George J. Simitses-
School or Engineering Science and MechanicsGeorgia Institute of Technology, Atlanta, Georgia

ABSTRACT

The msucript deals with buckling ot Mathematical Formulation
, - , ani annular circular plates, made of
-v'.&ric laminates with general orientation of The geometry consists o a circular laminated
t, iamr. fiers. The plate is subjected to an plate subjected to axisymmetric loading at the

r-.,., symmetric, destabiiizing load. The load edges (see Fig. 1). The laminate Is a symmetric,

L ,,ileJ a: the outer edge for the complete regular, angle-ply one (8).
.- e a'i . the outer arid inner edges tor the The governing equations for the primary state

11 . l r e The plate Is supported In various are [11):
k.- . )) al)ng it,3 tounlaries.

The .;er Includes the derivation ot the
* - r..-1 equations and discusses the various 0 0 0

3r solution. Numerical results are (rN ) * N - N - 0
fi .nre1 r r a cla,ped plate. rr *r r9,0 00

Introduct ion 0 No
9m ~ N

°  
(rN e)^_ •N - 0()

r F '--" r nforced laminated composites are

.. ;rlji.. 1Idelay replacing metals as construclton Moreover, the buckling equation, in terms or
rv,, Isn especially In the manufacture or moments and force resultants, after neglecting the

i.-., air and space vehicles. Thin plates and small non-linear terms, is (see Appendix 8).
ar-' popular structural elements. Such

-. firjratisP3, in service, are mostly and often I9 ,,Jectei to external loads which may Induce (rM ,rr -r r e r ee, 0
"u-. inq. in many situations buckling is an
"r, '5;rattie phenomenon and It forms a primary
cc)ns.1'lrat ion ror design. Because ot this, w W.

tabi' .ty or laminated plates and shells continues -M ) * r [N w, * N (-- . -) .
a attract the attention of the structural 0, r'rr 2

enS , n "r .r r
m'st or the analyses reported in the open

literature [i-5] tor circular configurations are * 2N
0  

('r 1
lml'i to polar orthotropy, a case for which the re 2 ))
varlo-m3 rigidities are constant with respect to r r
the radial and circumferential coordinates. w N
Another group o plates employs rectilinear where N N0  Nre
ort-ictropy tor which results are reported in the ro

, 'en literature (6-7). The analysis, for this resultants. Mrr . M , Mre are the bending and
grcJp is limited to vibration problems only. The
b~rcilrg oP lam~nated cmposite plate is usually twisting moment resultants; w the transverse dis-iitel to rectangular plates (8-9). A very de- placement, and r,0 the coardinates in the radial
.a.ie1 sarvey based on hundreds of references by and circumferential directions, respectively.
.ei'i3 1 , on composite plates, discusses The in-plane, primary state, kinematic

results and analyses for only rectangular relations are given by
reltinsarngve.bc~nfi • )tion3.

T-e manuscript includes the derivation ot the o -

nvernlng equations and discusses the various rr r
n,'-thoi,' of solutions. The analysis deals with
y. -,l.lng of circular laminated composite plates, 0

"oai,'d by in-plane axisymmetric forces at the Coe " v,0 /r t u/r (3)
edges. Tna geometry Is limited to symmetric
regilar angle ply contiguratIons and lamination
therry (8,11] Is employed. The solution proposed Yo 0u,/r-vlr

hn twe paper Is based on the GalerkIn an( the re V'r 0

mu,1:?ei Galerkin procedures. The plates
, :-,!,3 1 t!red h.erein are either clamped or where uv are the deformations in radial and

ZstmIly-sjEt:orte. circumterential directions, respectively. Note
_ % that the transverse displacement (w

°
) is zero in

the primary state. The relations between the
% *Ftlctoral Fellow. on leave from Technion- stress resultants and the in-plane (reference

Israel Institute of Technology, Hailf, Israel. plane) strains are
"'Protessor, A5s,,clate Fellow or AIAA; Member ASME

Releal to AIAA to publish In all forms.
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0 Substitution of Eqs. (7) into Eq. (8) and use or
FAr A12  At r Eqs. (4) yield1 [1a rFr (2a2 2 - a2 4 ,) r F, - 2a r ]F

N -e A 12 A 22 A 2 22 rrrr 22 4. rrr 24 rrre

2 2(- 2a24,B* al2.80 - all- al4.e) r2F.rr

A A 4  Aj 0rJ2. 200 I 40 r

h (2a12 ' *
4
) r F (2a' a 4 4  r'r,

" + -(~dzand the -(r( e1, h2 k- are 'a 1 * a: (ala I. %; B- ) r F r  (-840ee -2a 14

.,erin.l I:; Appendix A. * 2a - 2a r)Fr - 2a r F
Tn.1 terms At are 0-*lependent and they also It 24 re 14 'roeO

CP7- ' c, te rplative fiber orientation between
tr v':+'-s layers. (a 2a 2a) F. (a a 2a

T- T r.Lrsjlations can be used for the primary 14,00 14 24 e 11,08e 44 14,e
5 .:a f5lA . Note that. In order to solve the

Sklg e 3t.'n) we neel the primary state stress *2a 1 2 F. a4 2a )F.e

reiult an._s N N nd in terms of the'rr' No and Inr e rso
0r re

F ,  
L FF 0 (9)

I;,'i le a LadIngs. I some or the In-plane 1 1 oes F
i ml3r, ,'ono: Lions are kineematlc then the where (a,:] - A-jI - and LF is the differential

Sn : dp - ah Is uled fir solving the primary a oi
1 t a e. I., tihe -3jher hand, If the In-plane operator o the equation.

* . iry lit latns are natural then the force The coefficients In the above equation are In
Y; . Is e..tyed. For details see Appendix B. general 0-dependent. There is no closed form

,P T'. Iro',I 2 formulation in terms of u and v

, !, rrid. The ee solution and an approximate one can be derived

'."I -,r, l.t utlon or k.1. [ ) and (4) Into through the Galerkin procedure by assuming

.(r,) - F (r,0) an F n(r,8) (I0)
,e 4 (u a 'r l r

A, A '*where F (rO) is chosen In such a way that It

r A y 24(u, " V'r) sati as the boundary conditions. Thus, the
qstresses due to function Fn(re) must vanish at

the boundaries. The unknown coefricients, an. are
3r * A (uA 44 , * v . - 0 (5) evaluated through the Galerkin integrals. or

" A v, A 4 H r 8

" . ' A 'e JA [LFtF(rP0))] F it d - 0 (m - I....-) (II)

_ ' A V.The functions Fn (r,o) must satisfy the rollowing

SA * A 2 4ve k44J'e V )] r boundary conditions;

A , "r " '0 ' A 4 (U. 'r ) = 0  
(6) N

° 
-0 -F /r * F /r

2

rr nr nB8

C Lr'e t-.e A -lefficients are 5-dependent, the (12)

lerivatIv' wIth respect to e are not null and
m . t be included In the equations ° . 0

- F /r - Fn/r 2  at r-H
The force approach determines the stress rO n.r n.0

3 istri It Ion by the Introduction of the Airy

itrts function through the In-plane compatibility (r,0) - fn(r) cos no then the abovo
e a I "n. The Airy stress function and primary initioia a n r be n rpc by:

stress resultants are given by t12).

Fr /r F / (r) -0
.Mrr 'r 'so n

(13)

N (7) fn,r(r) - 0 at r Ri

No- - (F. /r), Namely, the functions in(r) can be chosen to be
.#. a r the deflection functions or a clamped plate.

S""e n In the case of a circular plate, loaded at

an the cospatibility equation is. the outer edge the functions atre

O 0 r o o
rr,eA rrr Be ,rr re (r )

% % 2

.4
r V* '.*



n. n- ...-) (1) w'rrO (40 44.0 # 20120 r

S.,' 2
7-, 13 the Cter radius. , WrrG(2D12 0 q4D)/r + w, r (022 * D2 2.

:n a casm or an annular plate. loaded at2
.- 'yer 3-il at the outer edges, the function W. (14D1 - ID 2D0 2D0 D / r

cnleear:re 11 441106 211,00 22.00. 214C'' . ,~ are:

".. r r 'r - R ) 2(r - R ) (rR 2 (r-R ) rO (-2D12 % 6D21.0 
r

(.n (15) W. (D2 )1r2 . W. 110 4 42

wt-. ?, and R, are the outer and inner radii,
t re case or a circular plate, loaded - s22 O) I 3 

w (20 .20 - 60 * *

ail :-cetrlCally at the edge, or an annular plate

a tca outer and inner edges with the sae D 02 ) / r3

ItenSity, an analytical closed form solution
ex*3,. provijeO that the plate has cylindrical 3

o-tl';l, r;, . no function is given by F - Cr
2 , w, (- 4D 2 20 /r 3 w6 (D0 / r 

3

s i e croined througl the force boundary 80
"_'o t t: ! . !n the case or a laminated plate, 2
t '.C

0
°gn. this -olution is acceptable r IN0 W. N0 (V. /r 2 w, /r) *

. tnln ac englnering accuracy. The error In the rr rr 08 oe r

atiCiii'ty ejuation. Eq. (9) is of the order.2
lnsteid cr zero. In general, the solution * 2N 0 (w, /r - w. /r - 0 (18)

. re le propo3ed earlier should be followed. rf re 0
)1: huc lIng equation. In terms of the

t ljr 3,ra-e J1I-placement, is derived by using the where N
. o and No are the radial. circuaer-

rolt : 00 ro0 . . netic relations ential and shear primary stress resultants. The

coefficients in the above equation. Eq. (18), are
, .w :r 0-dependent and the partial derivatives with

respect to 0 must be considered.

- - , w /r(16)The solution In general, even for thex ,- - r . / (16)
simplest Of cases, is very complicated. An
approximate solution approach, based on the

r w. / Galerkin procedure, is employed. It is outlined,
,r wlh suffiolent detail, In the next section.

£ ' ra re the radial, circuaferential Solution of the Buckling Equation

a-I t 1-s nal curvature changes ot the plate Two variations of the Galerkin procedure are
dsJurfave. The moment-strain relations are employed, herein, In order to achieve a solution

*.. "derved through integration through the thickness for the buckling equation.
an. ar- glien Dy (Fote that there is no coupling The first one is the strict Galerkin
tbetween teniirs and stretching) procedure, which employs a series solution

(approximation) such that each term In the series

D 0 D aatiatiea all boundary conditiona. regardless or
•1 12 11 rr their nature (kinematic and/or natural). The

second one to the modified Galerkin procedure (13].
S"22 D22 2(17) In this case, each term of the series need only

satisfy the kinematic boundary conditions. Then
0111minimization of the error includes boundary terms

L -, 01 D 24 D44 r8 along with the Galerkin Integrals.
The approximate solution is equal to

h (truncated series)

- ( -(k) 2N
k_ I j a ( ) AnWn(r) coo nO (19)

kIh n-0
5 €% v-where, w (r) are funotions of r; A undetermined

io Eqs. ( 11) and (16) into Eq. (2) constant 
2
nd n denotes the number R terms. The

yle.': assumed runotion to be used with the regular
*-"" Calerkin procedure (13], must satisfy all boundary

- D .rrr (22 * 20 1 ). wrrr (1) 14 conditions at the various edges of the plate. The
.rrr 1 radial function coefriolents are determined In

such a way that all the boundary conditions are
V- -, *20 0 * aatl'ied.

- rr 21,a 14,e 22 12.00

-I,. 3

Win
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I~ It to clarifly thin, let us consider the 1. 3(A)2r .. t.) case3 for a ccmo t.e circular plate. 2. (h - h-) (-dw - (-n
2

w /r 2

- -. 2ia..p d late at r - k k i 2 113 nrr n
.e ' -n a r y c .I i t l o n s or t h ias ,c a se a r e : _(k) W r2 )  (A)Sw n /r) d12 - (Wn~ - wr)n dl 3 - 0

-= *,3 - W*r(Ro.0) - 0 (20) , 121 nr n 1433 r 0 ( 2 I 2

T 1 31.; * I ct the a.%sumed solution, Eq. 3 ( ) [ (-a w - (-n
2

/r 2

1 9 -i n , :.' e f -., u n a r y c o n d i t io n s y i e l d s : ( ) )

w 1r) w / w/ n d1, 1- 0(21) n r 121 n,r n 143

S (h3- 
1 i (d( k )w ( 2 ' 2.An ii z,.!r-I..=! thrutgh the appltic ton of the 3 k x 114 n,rr n

p''Cw:' r , r- on the buckling equation, Eq.
1k.( /r - /r2 ) n] - 0

Wn,rl 1d22 ) 2 (dll12 ,

-S T A v
1

hA su~pe~ted circular plate.nr ) 1 , *d 2  Ui- i-a
-T. or!ttons for this plate are given 1 3 3 (k) 2w

S(h, -h _ 1)( ( -d It ,rrC(-n w/r
k k ( 2 I rr n

n  (/r)d ) d k)w /r - wn/r 2) nj - 0 (24)n.r 122 142( n,r fl

-D (w. 2/r
'' w rr 12 , 6 /r2 w r/r) where: d O( k ) Q(k) " - (Q(k). 2Q •k) Q(k))

a110 11I 12 44 8 228 8

' r - I, 'r
2 
1] r (22) ( k ) ( ) (k ) 4 cor - R d S ( 0 2o

(k) (k) (k)) 4,J 3Z '.t!-.1 .-.f Leo assumed solution Eq. (19), d, - (01 - Q22 sin 28 <_ "'. ,) : . , , ) r er ge l ebraIo manipulation2

yieldn L'- rt ?I .!ing equivalent boundary (k).. . ( Q (k ) I 2 . (k ) 2Q ik )
c,;nd! t lo-i -

1 13  1 - B 1 ?Q 44

- , - in - J. . .M) *(Q ) 3)co
(n (Z), (k) I C s 4

- . .(22(2 2 ,( " -d (-n w /r / (k) ( ) 1 2 k) . (k)u n,rr n d° I " (Q t) - 2 2 Q44

) 
5 (k) 1.

w ,I - k I, sin 4
, . 22 8 k

. ).* ( /r d1  - (k)k ) ) (A) 6 Q(k)
. .* " , - .2 d1 1 1  Wn,rr (wn r • 8 *

.d 1 2 1  - ( k (k) (k)d 21(Q(I Q22 (j44

(,k)1 :!cos 
4

0,(2,
I (k)

.- " - ? 'l" /r rIr d n, r I (k) k))

122 - 11 22 44

°.m _k)2
•' q2 In

FI 
((k)

h 1 17 d 1- 4* (w /r-%h- n~rr 10 n.r (k) I (k) k ()

c..143411 2?~2) k
• dllO "- (QOCI - a2 ) 

0 At 0

-, .. .. d(k) I ( k)_ (k) a'w':.~14 ,, ( , 22 -

'1 ( w -d
( )  

w /r
'1 n , r r 4 n . r ( k ) (I4 k ( ( ) - S i n 6 ,

./.-. d!( (Si d) J* , )n n I~

@41
. . ."



[ 
K kl (k) extension. The plate is made of 2m plies, with

r 2 Q 42 00 co 6U fiber orientations (0 0 /i 180
0
/M),, where m is the

2 2 - k number of plies. Note that when m - 3 (three

.M plies), the configuration is (0/60/-600)s; when

3". - m - U, the configuration is (00/450/-450/450); and

when m - 6. It finally becomes (00/300/-300/300/

-300/303),. All plies are made of the same

Tr e ijaed expression for Wn(r) must have material, Graphlite/Epoxy (T300-5208), with 70%

at I -js' ten ccnstants and can be described by fiber volume and the following properties

6

w(r).A * a r 2 E I - 26.3 x 10 psi ; E - 1.49 x 106 psi

n 
3 

n n
v12 * 0.28 and Gi2 - 1.0 x 106 psi

a 7 8 a9 rrn The buckling load Is nondimensionalized by

Ii n 8n n the quniyEh312R 2 1- v ),w ih1
qatt 1 1h 01 12v2I hihs

common for all configurations. Thus.

! ., n - 0 ... N (26)

-N - k E h
3
/ 12 R

2 
(1 ) (29)

wrr ! n Is etermlned from the condition that the rrcr r 11 0 12v21

:eteim Inant cf the coefficients must vanish and s 0

t Da d nr considered to be the elements of an Note that h and R o are the plate thickness

elgvnvector. Use of the Galerkin procedure leads and radius, respectively.

,to 'ha vanlahing at n Galerkin integrals, or: The primary state is solved for by using

the procedure, outlined previously, and the

R 2 functions appearing In Eqs. (13) and (14). The

'o rGalerkin Integrals are evaluated by using

wr.)r drd6 - 0; numerical Integration with Romberg' s extrapol atic.i
method. The allowable error Is smaller than 10

- 6 .

The approximating series Involves functions

r m 1,2 ... N (21) which are the buckling modes of the corresponding
°- isotropi c problem.

N e tra" ;,e of the Galerkin procedure 
with an

a!s ened soutlon which satisfies all the boundary N

.rjltlh'j3 is advantageous only In the case where wa (re) - I (Jn(nr) C 2nr)cos n

ai h n..iry hondttlons are kinematic. In case of n-O

.~torai nt,ourdary conditions, the assumed functions

mei .i. ma'h more complicated and the procedure where, Jn
( 

) are Bessel functions of the first

my',.t *v. very tei;ous. kind of order n; On Is the square root of the

An alternate approach is offered, which is buckling coefficient o the lsotr( )ic critical

basol on the modified Galerkin procedure as stress resultant (corresponding to the nth mode;

ar.rs In (13). In this case, the assumed If n - 0 an - l4.68); and C2n are undetermined

5-at-,,n must satisfy only the kinematic boundary constants, evaluated by satisfaction of the

r:;tns, and the unknowns are determined boundary conditions.

tbhrough the followlng modified Galerkin Integrals: The limited results are shown graphically

on Figs. 2 and 3. Fig. 2 shows a plot of kcr

'Pr (M N) 'r.8) d4 • rr - r - versus m, which implies various quast-lsotropic

'A 'i rr r - R (In extension) constructions. It is seen from
" this figure, that kcr is Independent of m. This

I so because the average flexural stiffnesses,

- r - 'L'A) "
I ( r r 

- rr) w (r - Ria) - 0 primarily D1I & D22 . are the same for all m.

'- rr rNext. the configuration corresponding to m - 3 was
'--1  taken and E 2 2 /E was arbitrarily changed from the

correct value of 0.05665 to the value of one

(almost Isotropic) by keeping the other values

. - 1,2...N (28) constant. It is seen from Fig. 3 that the value

of kcr varies from 6.16 to 12.31. Note that the
value of kcr for the Isotropic construction is

". 3 -v the raJIal bending moment and shear 1I.68. The difference between the two values is

a ra attributed to the effect of the shear stiffness.
-,. 1.,qrmtrel with the approximate solutions; On Fig. 3, and for E2 2 /E 1 1 - 1, two additional

values of kcr are shown, In order to depict the

. .rc t'C radial bending momont and shear C-effect.
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E 1 2

where: Q - 1 : Q - 2
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~endI A: Compliance Matrix Coerficients In 6 Appendix Bt Derivation or the Governing Equation3
Cocrdinates

Ths aThis appendix Is devoted to a detailed
This appendix outlines the procedure for derivation of the governing equations. The

determining the coefficients of the matrix In positive directions of the applied and internal
terms of the fiber orientation angle of each forces are desorlbed In Fig. B.I.
lamlnate relative to the 8 - 0 axis.

Tre ntre3s-strain relation for each lamina under
Sco,,i deratiton Is:

I I 1.

(a) In-plane Resultants (b) Internal Bending
Forces and Toreion Moments
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The bending moment and the vertical deflection In

the PrimaY eOtet designated with ( )0 are zero.
Theaddtioal trems i. N cJ thosen to be very

J e16 al cmaetoNi thua, after substituting It

In Eqs. (8.1) and (8.2) yieds

I- ({j r O,0 S 0
r1 Ir r

O8.9 Ure r ra(c) Internal Vertical (c) Positive Deformation
Shear Forces

a nd the buckling equation In the vertical
direction iot

Fig. B.1Iinternal Forces A Deformation ot
Differential Area of the Plate
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Tne *,urvatures are:

"rr -w rr  A1 2 U r r A2 2  v O A A2 4 (u,e+ V. r )]

'r9 -w .'r - w,r/r (5.7) + I r (A 1 u.r + A *24v'O Ah lu.0 V, r)] 1
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A . *A 2 V.0 * A4 (u' . 0 (B.11)

Using tne comon assumption in plate theory yields
tr~e foilowIng relation between the internal forces D )dn! the strains and curvatures: (r (D1 1 1 r r  12O 
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Since the various stiffnesses are 0-dependent, the

derivative or the coefficients with respect to 0

are different from zero and must be included In8 12 022 D24 X 08 the equations.

I [The in-plane stress distribution can bef?4t D derived using the Airy function, through the
r2 4 

1re coampability equation. The Airy function and

stress relations are,

h

where A " - jk IJ dz Nrr F.r/r .(/r5F.
k h

k- 1
. .N e - F ~ (8.13)
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The formdlation using deformations uv and vThe copatibility equation is:
yields the following governing equations:
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2u., * 2 2 vG* 2 4 e 4 0 Substituton in Eq. (B.14) and usae of Eqs. (0.6)

and (8.13) yields:
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Fig. I Load, boundary oonditlons and eometry or
a typical laminated Olrcular plate
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I (Inb...-Lzo.)

g Fig. 2 kgr versus the angle (no. of layer) for a
'uasl-1sotropIo (in extension) laminate
plate, made of Graphite-Epoxy (T300-5208)
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